Abstract

In this paper, we conduct three case studies to assess the effectiveness of a recently proposed first-order method for robust nonlinear programming [Zhang, Y.: J. Optim. Theory Appl. 132, 111---124 (2007)]. Three robust nonlinear programming problems were chosen from the literature using the criteria that results calculated using other methods must be available and the problems should be realistic, but fairly simple. Our studies show that the first-order method produced reasonable solutions when the level of uncertainty was small to moderate. In addition, we demonstrate a method for leveraging a theoretical result to eliminate constraint violations. Since the first-order method is relatively inexpensive in comparison to other robust optimization techniques, our studies indicate that, under moderate uncertainty, the first-order approach may be more suitable than other methods for large problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.