Abstract

Objective: To report a case of robot-assisted partial nephrectomy (RAPN) for two highly complex renal tumors in a patient with a Horseshoe kidney (HSK), focusing on the utility of hyperaccuracy three-dimensional (HA3D) virtual models for accurate preoperative and intraoperative planning of the procedure.Methods: A 74-year-old Caucasian male patient was referred to our Unit for incidental detection of two complex renal masses in the left portion of a HSK. The 50 × 55 mm, larger, predominantly exophytic renal mass was located at the middle-lower pole of the left-sided kidney (PADUA score 9). The 16 × 17 mm, smaller, hilar renal mass was located at the middle-higher pole of the left-sided kidney (PADUA score 9). Contrast-enhanced CT scan images in DICOM format were processed using a dedicated software to achieve a HA3D virtual reconstructions. RAPN was performed by a highly experienced surgeon using the da Vinci Si robotic platform with a three-arm configuration. A selective delayed clamping strategy was adopted for resection of the larger renal mass while a clampless strategy was adopted for the smaller renal mass. An enucleative resection strategy was pursued for both tumors.Results: The overall operative time was 150 min, with a warm ischemia time of 21 min. No intraoperative or postoperative complications were recorded. Final resection technique according to the SIB score was pure enucleation for both masses. At histopathological analysis, both renal masses were clear cell renal cell carcinoma (ccRCC) (stage pT1bNxMx and pT3aNxMx for the larger and smaller mass, respectively). At a follow-up of 7 months, there was no evidence of local or systemic recurrence.Conclusions: Surgical management of complex renal masses in patients with HSKs is challenging and decision-making is highly nuanced. To optimize postoperative outcomes, proper surgical experience and careful preoperative planning are key. In this regard, 3D models can play a crucial role to refine patient counseling, surgical decision-making, and pre- and intraoperative planning during RAPN, tailoring surgical strategies and techniques according to the single patient's anatomy.

Highlights

  • While surgical management of renal masses arising from Horseshoe kidney (HSK) can be highly challenging given their rarity and the lack of established guidelines [2], a recent multicenter study by the Young Academic Urologists (YAU) Renal Cancer working group showed that such tumors can be approached via both open and minimally invasive surgery, with maximal preservation of functional renal parenchyma and acceptable histopathological and perioperative outcomes [1]

  • Specific challenges associated with nephron-sparing approaches for tumors arising from HSKs are represented by the limited possibility to mobilize the kidney, the difficulty in recognizing and controlling the several vascular structures of the renal hilum, and often the need for complex renal reconstruction techniques [6]

  • We report a case of robot-assisted partial nephrectomy (RAPN) for two complex renal tumors in a patient with a HSK, focusing on the utility of 3D virtual models for accurate preoperative and intraoperative planning of the procedure

Read more

Summary

Introduction

While surgical management of renal masses arising from HSKs can be highly challenging given their rarity and the lack of established guidelines [2], a recent multicenter study by the Young Academic Urologists (YAU) Renal Cancer working group showed that such tumors can be approached via both open and minimally invasive surgery, with maximal preservation of functional renal parenchyma and acceptable histopathological and perioperative outcomes [1] This surgery being highly demanding, meticulous pre-surgical planning and taking advantage of advanced imaging techniques and three-dimensional (3D) models [3, 4] have been advocated to aid in achieving good outcomes [1, 5]. Specific challenges associated with nephron-sparing approaches for tumors arising from HSKs are represented by the limited possibility to mobilize the kidney, the difficulty in recognizing and controlling the several vascular structures of the renal hilum (which are highly variable across patients), and often the need for complex renal reconstruction techniques [6].

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.