Abstract

During a suspension of a GIFT tilapia broodstock recirculating aquaculture system (RAS), a significant fish mortality event occurred. To determine the cause, four bacterial strains were isolated from affected fish and identified as Vibrio vulnificus through 16S rDNA sequencing. Virulence assays confirmed the pathogenicity of these strains, with the most virulent, CS-4, selected for a further analysis. Antimicrobial testing revealed CS-4’s sensitivity to 19 antibiotics, including meloxicillin and Gentamicin. Challenge tests indicated varied 7-day Lethal Dose 50 (LD50) values for CS-4 depending on the infection route, with immersion after skin injury being the most lethal. Additionally, the effects of salinity, crowding with air exposure, and nitrite on tilapia mortality were evaluated. The results showed that salinity stress increased the mortality rate of tilapia infected with V. vulnificus through immersion, and that salinity stress and V. vulnificus infection had a synergistic effect. A 20 min crowding with air exposure stress reduced the mortality rate of Nile tilapia infected with V. vulnificus. Nitrite stress had little effect on the mortality rate of tilapia infected with V. vulnificus. The results of the risk factor analysis indicated that salinity was the main factor affecting tilapia mortality caused by V. vulnificus infection. This study will serve as a valuable reference for the future management of similar RAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.