Abstract

Genetic algorithms (GAs) augmented with a case-based memory of past design problem-solving attempts are used to obtain better performance over time on sets of similar design problems. Rather than starting anew on each design, a GA's population is periodically injected with appropriate intermediate design solutions to similar, previously solved design problems. Experimental results on configuration design problems: the design of parity checker and adder circuits, demonstrate the performance gains from the approach and show that the system learns to take less time to provide quality solutions to a new design problem as it gains experience from solving other similar design problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.