Abstract

BackgroundAs the most abundant excitatory neurotransmitter in the central nervous system, glutamate has been accepted to play a major role in the pathophysiology of migraine. The previous studies have reported the glutamate receptor ionotropic GRIA1 and GRIA3 genes variants associated with migraine. The project aims to investigate the polymorphisms in both genes for their association with migraine in the Chinese Han population.MethodsA Han-Chinese case-control population, including 331 unrelated female migraine patients and 330 matched controls, was studied. Variants in genes (GRIA1 and GRIA3) were genotyped by Multiplex SNaPshot assay.ResultsIn the group of patients, the frequency of allele C was 84.1 % (557 C alleles) and allele T was 15.9 % (105 T alleles) for the GRIA1 (rs2195450) in migraineurs, this was significantly as compared with the controls (P = .001, OR = 1.786, 95 % CI: 1.28–2.49). And an association was also seen in the migraine with aura (MA) subtype (P = .012, OR = 2.092, 95 % CI: 1.17–3.76) and migraine without aura (MO) subtype (P = .002, OR = 1.737, 95 % CI: 1.23–2.45). However, no evidence was found that GRIA1 (rs548294) or GRIA3 (rs3761555) is associated with migraine.ConclusionOur data of this study confirmed the association of GRIA1 (rs2195450) to female migraine (MA, MO) susceptibility in the Chinese Han population. The result provides evidence that the glutamatergic system is implicated in the pathophysiology of migraine.

Highlights

  • As the most abundant excitatory neurotransmitter in the central nervous system, glutamate has been accepted to play a major role in the pathophysiology of migraine

  • General information This study involved a total of 331 female migraine patients and 330 female controls

  • Two SNPs in the GRIA1 gene and one SNP in the GRIA3 gene that have previously demonstrated positive association to migraine in the study by Formicola et al were selected and tested in our study [13]

Read more

Summary

Introduction

As the most abundant excitatory neurotransmitter in the central nervous system, glutamate has been accepted to play a major role in the pathophysiology of migraine. The previous studies have reported the glutamate receptor ionotropic GRIA1 and GRIA3 genes variants associated with migraine. Migraine, characterized by recurrent attacks of severe headache, is a complex debilitating neurovascular disorder accompanying with nausea, vomiting, photophobia and phonophobia, which can cause temporary incapacitation in the migraineur. It is divided into two common forms: migraine with/or without aura (MA and MO), and diagnosed according the ICHD-III(HIS 2013) [1]. Genetic association studies have mostly investigated variants in serotonin and dopamine receptor genes.

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call