Abstract

Over the past decade, case-based reasoning (CBR) has emerged as a major research area within the artificial intelligence research field due to both its widespread usage by humans and its appeal as a methodology for building intelligent systems. Conventional CBR systems have been largely designed as automated problem-solvers for producing a solution to a given problem by adapting the solution to a similar, previously solved problem. Such systems have had limited success in real-world applications. More recently, there has been a search for new paradigms and directions for increasing the utility of CBR systems for decision support. The paper focuses on the synergism between the research areas of CBR and decision support systems (DSSs). A conceptual framework for DSSs is presented and used to develop a taxonomy of three different types of CBR systems: 1) conventional, 2) decision-aiding, and 3) stimulative. The major characteristics of each type of CBR system are explained with a particular focus on decision-aiding and stimulative CBR systems. The research implications of the evolution in the design of CBR systems from automation toward decision-aiding and stimulation are also explored.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.