Abstract
This paper proposes to use case-based-reasoning for grey-level image segmentation. Different approaches to image segmentation have been proposed in the literature. The selection of the segmentation approach and the assignment of the values to the parameters involved in the selected algorithm depend on image domain and on the specific application. Case-based-reasoning seems a promising way to make the above selection automatic. In this paper, we describe the results of a preliminary study done in this respect. In particular, we refer to the automatic selection of the values of the parameters for a new watershed image segmentation algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.