Abstract
Background modeling and subtraction is an essential task in video surveillance applications. Many researchers have discussed about an improvement of performance of a background model, and a reduction of memory usage or computational cost. To adapt to background changes, a background model has been enhanced by introducing various information including a spatial consistency, a temporal tendency, etc. with a large memory allocation. Meanwhile, an approach to reduce a memory cost cannot provide better accuracy of a background subtraction. To tackle the trade-off problem, this paper proposes a novel framework named "case-based background modeling". The characteristics of the proposed method are (1) a background model is created, or removed when necessary, (2) case-by-case model sharing by some of the pixels, (3) pixel features are divided into two groups, one for model selection and the other for modeling. These approaches realize a low-cost and high accurate background model. The memory usage and the computational cost could be reduced by half of a traditional method and the accuracy was superior to the method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.