Abstract
Model-based image recognition requires a general model of the object that should be detected in an image. In many applications such models are not known a-priori instead of they must be learnt from examples. Real world applications such as the recognition of biological objects in images cannot be solved by one general model but a lot of different models are necessary in order to handle the natural variations of the appearance of the objects of a certain class. Therefore we are talking about case-based object recognition. In this paper we describe how the shape of an object can be extracted from images and input into a case description. These acquired cases we mine for more general shapes so that at the end a case base of shapes can be constructed and applied for case-based object recognition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.