Abstract
Modern structural design software can simulate complex collapse dynamics, but the main physical processes driving collapse propagation are often hidden among structure-specific details. As a result, it is still unclear which structural geometries and material properties should be preferred when approaching the design of a damage-tolerant structure. This manuscript presents a new approach to explore the relationships between structural geometry, local mechanical properties, and collapse propagation. The insight comes from a unique ability to trace the evolution of load paths during collapse, achieved by combining energy conservation with local mechanisms of plastic failure and a few simplifying assumptions. The method is implemented in a new simulator of collapse of 2D frames, called CASCO and programmed in MATLAB. Simulation results for reinforced concrete frames predict collapse loads and mechanisms in agreement with fully non-linear, dynamic simulations, while also providing a graphical description of the evolving structural topology during collapse. A first application of CASCO to mechanically homogeneous and heterogeneous frames, indicates certain evolutions in number and density of load paths during collapse that may be targetted to improve collapse resistance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.