Abstract

AbstractThe National Aeronautics and Space Administration (NASA) Goddard Earth Observing System global circulation model (GCM) is evaluated through a cascade of simulations with increasing horizontal resolution. This model employs a nonhydrostatic dynamical core and includes a scale‐aware, deep convection parameterization (DPCP). The 40‐day simulations at six resolutions (100 km to 3 km) with unvarying model formulation were produced. At the highest resolution, extreme experiments were carried out: one with no DPCP and one with its scale awareness eliminated. Simulated precipitation, radiative balance, and atmospheric thermodynamic and dynamical variables are well reproduced with respect to both observational and reanalysis data. As model resolution increases, the convective precipitation smoothly transitions from being mostly produced by the convection parameterization to the cloud microphysics parameterization. However, contrary to current thought, these extreme cases argue for maintaining, to some extent, the scale‐aware DPCP even at 3‐km scale, as the run relying solely on explicit grid‐scale production of rainfall performs more poorly at this resolution.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call