Abstract

Meteorological droughts often propagate to agricultural (and other) droughts, both spatially and temporally. The present study proposes a novel complex networks-based cascading spatial drought network to examine the spatial propagation of meteorological droughts in a region to agricultural droughts in other regions. This is done through: (1) establishing stable homogeneous drought communities; (2) investigating inter-community drought propagation; (3) locating drought sources; and (4) evaluating drought connections within major crop belts. The approach is implemented to study droughts in the Indian-subcontinent during the period 1948–2022. Monthly precipitation and root-zone soil moisture data from GLDAS (Global Land Data Assimilation System) are used to compute the standardized precipitation index (SPI) for meteorological droughts and standardized soil moisture index (SSI) for agricultural droughts. Primarily, the drought network is demarcated into several subsets of network communities within which clusters of localized propagation take place. Multi-community subgraphs combining different communities are also formed to understand the long-distance inter-community drought linkages. Using network centrality measures, such as degree, closeness, and clustering coefficient, network properties of scale-freeness, small-worldness, and presence of rich-clubs are checked. Although the overall network does not exhibit any of these properties, certain subgraphs have significant small-worldness, rich-clubs, and partial scale-freeness. Some of the crucial nodes that support these network properties lie in the monsoon pathways (in the Western Ghats), and others have a strong association with El Niño Southern Oscillation (ENSO) teleconnections, thus validating the ability of the drought network to capture seasonal and climatic features. Additionally, subgraphs of nodes with high productivity of different food crops are created to study drought propagation within crop belts. Barring potential shortcomings related to data dependencies, the cascading spatial drought network helps identify an impending agricultural drought that could strengthen our ability to forecast droughts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.