Abstract

Responsiveness to stimuli is important in daily life: natural biological activity is governed by continuous stimulus responsiveness. The design of stimuli-responsive materials is required for the development of advanced sensing systems. Although fully controlled stimuli-responsive systems have been constructed in nature, artificial systems remain a challenge. Conventional stimuli-responsive materials show direct responsiveness to an applied stimulus (Stimulus 1), with structural changes in their molecules and organized states. This feature article focuses on cascading responses as a new concept for integrating stimuli-responsive material design. In cascading responses, an original stimulus (Stimulus 1) is converted into other stimuli (Stimulus 2, 3, …, N) through successive conversions. Stimulus N provides the eventual output response. Integration of multiple stimuli-responsive materials is required to achieve cascading responses. Although cascade, domino, and tandem chemical reactions have been reported at the molecular level, they are not used for materials with higher organized structures. In this article, we introduce functional carriers and sensors based on cascading responses as model cases. The concept of cascading responses enables the achievement of transscale responsivity and sensitivity, which are not directly induced by the original stimulus or its responsive material, for the development of advanced dynamic functional materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.