Abstract

Several satellite missions are currently available to provide thermal infrared data at different spatial resolutions and revisit time. Furthermore, new missions are planned thus enabling to keep a nearly continuous ‘eye’ on thermal volcanic activity around the world. This massive volume of data requires the development of artificial intelligence (AI) techniques for the automatic processing of satellite data in order to extract significant information about volcano conditions in a short time. Here, we propose a robust machine learning approach to accurately detect, recognize and quantify high-temperature volcanic features using Sentinel-2 MultiSpectral Instrument (S2-MSI) imagery. We use the entire archive of high spatial resolution satellite data containing more than 6000 S2-MSI scenes at ten different volcanoes around the world. Combining a ‘top-down’ cascading architecture, two different machine learning models, a scene classifier (SqueezeNet) and a pixel-based segmentation model (random forest), we achieved a very high accuracy, namely 95%. These results show that the cascading approach can be applied in near-real time to any available satellite image, providing a full description of the scene, with an important contribution to the monitoring, mapping and characterization of volcanic thermal features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.