Abstract

Interfaces with multifunctions for promoted solid/solid interfacial charge-transfer dynamics and accelerated solid/electrolyte interfacial water redox reaction kinetics are determinative for the photoelectrodes achieving high performances for photoelectrochemical (PEC) water splitting. In this work, well-designed cascading interfaces are introduced in the n-Si photoanode, which is effectively protected by an atomic layer-deposited CoO x thin layer for stabilizing the n-Si photoanode and then coated with an earth-abundant NiCuO x layer for catalyzing the water oxidation reaction. Furthermore, the formed n-Si/CoO x/NiCuO x triple junction could generate a large band bending to provide a considerable photovoltage for promoting the photoinduced charge-transfer and separation processes at the n-Si/CoO x/NiCuO x cascading interfaces. Moreover, at the NiCuO x/electrolyte interface, an in situ electrochemically formed NiCu(OH) x/NiOOH active layer facilitates the water oxidation reaction kinetics. This study demonstrates an alternative approach to stabilize and catalyze n-Si-based photoanodes with cascading interfaces for efficient solar water oxidation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.