Abstract

AbstractThe equations governing atmospheric flow imply transfers of energy and potential enstrophy between scales. Accurate simulation of turbulent flow requires that numerical models, which have finite resolution and truncation errors, adequately capture these interscale transfers, particularly between resolved and unresolved scales. It is therefore important to understand how accurately these transfers are modelled in the presence of scale‐selective dissipation or other forms of subgrid model. Here, the energy and enstrophy cascades in numerical models of two‐dimensional turbulence are investigated using the barotropic vorticity equation.Energy and enstrophy transfers in spectral space due to truncated scales are calculated for a high‐resolution reference solution and for several explicit and implicit subgrid models at coarser resolution. The reference solution shows that enstrophy and energy are removed from scales very close to the truncation scale and energy is transferred (backscattered) into the large scales. Some subgrid models are able to capture the removal of enstrophy from small scales, though none are scale‐selective enough; however, none are able to capture accurately the energy backscatter.We propose a scheme that perturbs the vorticity field at each time step by the addition of a particular vorticity pattern derived by filtering the predicted vorticity field. Although originally conceived as a parametrization of energy backscatter, this scheme is best interpreted as an energy ‘fixer’ that attempts to repair the damage to the energy spectrum caused by numerical truncation error and an imperfect subgrid model. The proposed scheme improves the energy and enstrophy behaviour of the solution and, in most cases, slightly reduces the root mean square vorticity errors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call