Abstract

Vehicle exhaust is the main source of air pollution with the rapid increase of fuel vehicles. Automatic smoky vehicle detection in videos is a superior solution to traditional expensive remote sensing with ultraviolet-infrared light devices for environmental protection agencies. However, it is challenging to distinguish vehicle smoke from shadow and wet regions in cluttered roads, and could be worse due to limited annotated data. In this paper, we first introduce a real-world large-scale smoky vehicle dataset with 75,000 annotated smoky vehicle images, facilitating the effective training of advanced deep learning models. To enable a fair algorithm comparison, we also built a smoky vehicle video dataset including 163 long videos with segment-level annotations. Second, we present a novel efficient cascaded framework for smoky vehicle detection which largely integrates prior knowledge and advanced deep networks. Specifically, it starts from an improved frame-based smoke detector with a high recall rate, and then applies a vehicle matching strategy to fast eliminate non-vehicle smoke proposals, and finally refines the detection with an elaborately-designed short-term spatial-temporal network in consecutive frames. Extensive experiments in four metrics demonstrated that our framework is significantly superior to hand-crafted feature based methods and recent advanced methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.