Abstract

Kidney volume is an essential biomarker for a number of kidney disease diagnoses, for example, chronic kidney disease. Existing total kidney volume estimation methods often rely on an intermediate kidney segmentation step. On the other hand, automatic kidney localization in volumetric medical images is a critical step that often precedes subsequent data processing and analysis. Most current approaches perform kidney localization via an intermediate classification or regression step. This paper proposes an integrated deep learning approach for (i) kidney localization in computed tomography scans and (ii) segmentation-free renal volume estimation. Our localization method uses a selection-convolutional neural network that approximates the kidney inferior-superior span along the axial direction. Cross-sectional (2D) slices from the estimated span are subsequently used in a combined sagittal-axial Mask-RCNN that detects the organ bounding boxes on the axial and sagittal slices, the combination of which produces a final 3D organ bounding box. Furthermore, we use a fully convolutional network to estimate the kidney volume that skips the segmentation procedure. We also present a mathematical expression to approximate the 'volume error' metric from the 'Sørensen-Dice coefficient.' We accessed 100 patients' CT scans from the Vancouver General Hospital records and obtained 210 patients' CT scans from the 2019 Kidney Tumor Segmentation Challenge database to validate our method. Our method produces a kidney boundary wall localization error of ~2.4mm and a mean volume estimation error of ~5%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.