Abstract

We theoretically analyze a new class of aperiodic phase mismatch. The phase-matching function that is chosen depends on the calculated second-harmonic amplitude generated in the device during the propagation of the fundamental beam at given input intensity and wavelength. We show that, in such a configuration, the fields evolve toward the eigenmodes of a χ(2) two-wave mixing process. Hence a constant pump and an enhanced nonlinear phase shift that grows linearly with propagation length are obtained. We also discuss the feasibility of this scheme that provides an alternative approach for the realization of optical switching devices or Kerr-effect compensators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.