Abstract
Fully convolutional network (FCN) has been successfully applied in semantic segmentation of scenes represented with RGB images. Images augmented with depth channel provide more understanding of the geometric information of the scene in the image. The question is how to best exploit this additional information to improve the segmentation performance.,,In this paper, we present a neural network with multiple branches for segmenting RGB-D images. Our approach is to use the available depth to split the image into layers with common visual characteristic of objects/scenes, or common “scene-resolution”. We introduce context-aware receptive field (CaRF) which provides a better control on the relevant contextual information of the learned features. Equipped with CaRF, each branch of the network semantically segments relevant similar scene-resolution, leading to a more focused domain which is easier to learn. Furthermore, our network is cascaded with features from one branch augmenting the features of adjacent branch. We show that such cascading of features enriches the contextual information of each branch and enhances the overall performance. The accuracy that our network achieves outperforms the stateof-the-art methods on two public datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.