Abstract

In fibers spun from polymer solutions, we investigated self-organization of ordered shish kebabs via the cascade evolution of various dissipative structures through multistep phase transitions at multiple length scales. We used transmission electron microtomography to discover for the first time crystalline fibrils with diameters of ∼10 nm that orthogonally bridge neighboring kebabs epitaxially overgrown from shishs. The fibrils evolved during the late-stage self-organization processes of the shish kebabs. The fibrils were classified as completely bridging fibrils and pairs of broken fibrils facing each other; the broken fibrils were formed by the following two steps, first by the flow-induced burst of the bridging domains driven by Laplace pressure and subsequent crystallization involved in the burst domains. The bridging and broken fibrils were observed at interkebab distances smaller and larger than the critical length of ∼80 nm, respectively. The bridging fibrils and the cores of the broken fibrils ha...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call