Abstract

The assembly of a functional flagellum in the bacterium Caulobacter crescentus requires the protein products of approximately 30 genes expressed in a temporally discrete and spatially distinct manner. Our current understanding of this system has been limited by the fact that purified protein products are available for only about one-fifth of these genes. A genetically engineered transposon promoter probe, Tn5-VB32, containing a promoterless gene encoding neomycin phosphotransferase II (NPTase II) was used to generate a series of non-motile (fla −), kanamycin resistant strains of C. crescentus. These transcription-fusions allow the expression of NPTase II to be controlled by flagellar promoters, and thus questions of temporal regulation of flagellar genes can be addressed without the need to obtain purified protein products. The flagellar promoters accessed by Tn5-VB32 exhibited temporal regulation analogous to the known flagellar and chemotaxis gene products. The expression of NPTase II in these mutants is read from a chimeric mRNA that initiates in a chromosomal fla promoter and continues through the inserted NPTase II gene. Thus, temporal regulation is controlled by modulating either the initiation of transcription, or transcript turnover, at specific times in the cell cycle. Epistatic interactions between the genes accessed by the promoter probe and other flagellar loci were studied in double fla mutants generated by transducing the promoterprobe mutations into spontaneously derived second-site fla-mutant backgrounds. The synthesis of both natural fla gene products and the accessed NPTase II was assayed in these strains using antisera to purified components of the flagellum and to purified NPTase II. On the basis of these interactions, a trans-acting hierarchy of flagellar and chemotaxis gene expression is proposed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.