Abstract

Refrigeration systems are very important to chemical/petrochemical process industries because their performances are closely related to product quality, energy usage efficiency, and plant profitability. Hitherto, the optimal synthesis of a cascade refrigeration system with multiple refrigerants and multiple temperature levels presents considerable challenges and systematic studies combined with thermodynamic insights and mathematical-programming approaches in this area are still lacking. In this paper, a general methodology for the optimal synthesis of such cascade refrigeration system to maximize the energy efficiency has been developed. The exergy-temperature chart combined with the exergy analysis is presented to comprehensively analyze the thermodynamic nature of a refrigeration system, which provides a solid foundation for the conceptual design/retrofit of the complex refrigeration system. An exergy-embedded MINLP model has also been developed for the optimal synthesis of a general cascade refrigeration system. The efficacy of the developed methodology is demonstrated through a case study on the retrofit of a cascade refrigeration system for an ethylene plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.