Abstract

Chromatic break and/or plateau observed in the early optical and X-ray afterglow lightcurves challenge the conventional external shock models of gamma-ray bursts (GRBs). Detection of TeV gamma-ray afterglows indicates strong gamma-ray production within the afterglow jets. We investigate the cascade radiations of the e ± production via the γ γ interaction in the jets. Our numerical calculations show that the cascade synchrotron emission can make a significant contribution to the early optical/X-ray afterglows. The combination of the primary and cascade emission fluxes can shape a chromatic break and/or plateau in the early optical/X-ray lightcurves, depending on the jet properties. Applying our model to GRBs 050801 and 080310, we found that their optical plateaus and the late X-ray/optical lightcurves can be explained with our model in reasonable parameter values. We suggest that such a chromatic optical plateau could be a signature of strong e ± production in GRB afterglow jets. The TeV gamma-ray flux of such GRBs should be significantly reduced and hence tends to be detectable for those GRBs that have a single power-law decaying optical afterglow lightcurve.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.