Abstract

Cisplatin has long been the first-line treatment for a variety of solid tumors. However, the poor pharmacokinetics and intrinsic or acquired drug resistance are the main challenges in cancer therapy. Herein, endogenous enzyme-responsive cisplatin polyprodrug nanoplatforms were developed for cascade-promoted photo-chemotherapy against drug-resistant cancers. The polyprodrug nanoplatforms, ICG/Poly(Pt), were fabricated from the indocyanine green (ICG) photosensitizer and cisplatin polyprodrug amphiphiles, PEG-b-P(Pt-co-GFLG)-b-PEG, consisting of repeated enzyme-degradable GFLG peptides and cisplatin prodrug units in the hydrophobic block and hydrophilic PEG chains, exhibiting ∼24.7 wt % cisplatin loading. Upon cellular uptake in lysosomes, cathepsin B could partially degrade the nanoplatforms into cisplatin prodrug, and then 808 nm laser irradiation would excite ICG to afford reactive oxygen species (ROS) and local hyperthermia, thus launching the phototherapy. Furthermore, the concurrent photodynamic and p...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call