Abstract
Due to the extremely high bond energy of N≡N (∼941 kJ/mol), the traditional Haber-Bosch process of ammonia synthesis is known as an energy-intensive and high CO2-emission industry. In this paper, a cascade N2 reduction process with dielectric barrier discharge (DBD) plasma oxidation and electrocatalytic reduction as an alternative route is first proposed. N2 is oxidized to be reactive nitrogen species (RNS) by nonthermal plasma, which would then be absorbed by KOH solution and electroreduced to NH4+. It is found that the production of NOx is a function of discharge length, discharge power, and gas flow rate. Afterward, the cobalt catalyst is used in the process of electrocatalytic reduction of ammonia, which shows high selectivity (Faradic efficiency (FE) above 90%) and high yield of ammonia (45.45 mg/h). Finally, the cascade plasma oxidation and electrocatalytic reduction for ammonia synthesis is performed. Also, the performance of the reaction system is evaluated. It is worth mentioning that a stable and sustainable ammonia production efficiency of 16.21 mg/h is achieved, and 22.16% of NOx obtained by air activation is converted into NH4+. This work provides a demonstration for further industrial application of ammonia production with DBD plasma oxidation and electrocatalytic reduction techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.