Abstract

Unstructured off-road environments with complex terrain obstacles and pavement properties bring obvious challenges for special purpose autonomous vehicle control. A cascade direct yaw moment control strategy (CDYC), which contains a main loop and a servo loop, is proposed to enhance the accuracy and stability of an independent eight in-wheel motor-driven autonomous vehicle with rear-wheel steering (8WD/RWS). In the main loop, double PID controllers are designed to generate the desired drive moment and yaw rate. In the servo loop, the quadratic programming (QP) algorithm with the tire force boundaries optimally allocates the demanded yaw moment to individual wheel torques. The 8WD/RWS prototype is virtually established using TruckSim and serves as the control object for co-simulation. The proposed cascade controller is verified by simulations in customized off-road driving scenarios. The simulation results show that the proposed control architecture can effectively enhance the path-tracking ability and handling stability of the 8WD/RWS, as to ensure the maneuverability and control stability under extreme off-road conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call