Abstract

During the rough marine environment, heave compensation is used to offset the heave motion of the vessel when a marine crane lifts and lands the load. Thus, load motion and vessel motion are realized decoupled. In previous studies, the interference items such as hydraulic cylinder friction, underwater drag force and nonlinear friction in the active heave compensation system of a marine hydraulic crane are compensated as a concentrated interference force to be estimated. In this paper, we disassembled the interference items; the disturbance observer and adaptive rate are designed to estimate unmodeled disturbance force and system uncertain parameters, respectively; and we designed an active heave compensator with the adaptive nonlinear cascade controller which has the disturbance observer (DOB-ANCC). For the heave compensation of load displacement, this paper derived the control law of the nonlinear system model based on the backstepping method. The outer loop control is displacement control and the inner loop control is pressure control. The simulation verifies the effectiveness of the control strategy proposed in this paper and the availability of heave displacement compensation for a marine crane hoisting load. The compensation efficiency of the designed controller (DOB-ANCC) for the heave motion of the load can reach more than 95%, and the maximum displacement tracking error of the controller can reach ± 0.035 m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.