Abstract

We investigate the nonlinear tunneling of optical solitons through both dispersion and nonlinear barriers by employing the exact solution of the generalized nonlinear Schrödinger equation with variable coefficients. The extensive numerical simulations show that the optical solitons can be efficiently compressed when they pass through adequate engineered nonlinear barriers. A cascade compression system in a dispersion decreasing fiber with nonlinear barriers on an exponential background is proposed and the cascade compression of optical pulses is further investigated in detail. Finally, the stability to various initial perturbations of the cascade compressed optical soliton and the interaction between two neighboring compressed solitons were investigated too.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call