Abstract
The abnormal structure of tumor vascular seriously hinders the delivery and deep penetration of drug in tumor therapy. Herein, an integrated and tumor microenvironment (TME)-responsive nanocarrier is designed, which can dilate vessle and improve the drug penetration by in situ releasing nitric oxide (NO). Briefly, S-nitroso-glutathione (GSNO) and curcumin (Cur) were encapsulatd into the Cu-doped zeolite imidazole framework-8 (Cu-ZIF-8) and modified with hyaluronic acid. The nanocarrier degradation in the weakly acidic of TME releases Cu2+, then deplete overexpressed intratumourally glutathione and transformed into Cu+, thus disrupting the balance between nicotinamide adenine dinucleotide phosphate and flavin adenine dinucleotide (NADPH/FAD) during the metabolism homeostasis of tumor. The Cu+ can generate highly toxic hydroxyl radical through the Fenton-like reaction, enhancing the chemodynamic therapeutic effect. In addition, Cu+ also decomposes GSNO to release NO by ionic reduction, leading to vasodilation and increased vascular permeability, significantly promoting the deep penetration of Cur in tumor. Afterwards, the orderly operation of cell cycle is disrupted and arrested in the S-phase to induce tumor cell apoptosis. Deep-hypothermia potentiated 2D/3D fluorescence imaging demonstrated nanocarrier regulated endogenous metabolism homeostasis of tumor. The cascade-catalysed multifunctional nanocarrier provides an approach to treat orthotopic tumor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.