Abstract

In previous works we considered schematic Hamiltonians represented by simplified matrices. We defined two transition operators and calculated transition strengths from the ground state to all excited states. In many cases the strengths decreased nearly exponentially with the excitation energy. Now we do the reverse. We start with the highest energy state and calculate the cascade of transitions until the ground state is reached. On a log plot we show the average transition strength as a function of the number of energy intervals that were crossed. We give an analytic proof of exponential behavior for transition strength in the weak coupling limit for the [Formula: see text] transition operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.