Abstract

The demand for the sensor-based detection of camouflage objects widely exists in biological research, remote sensing, and military applications. However, the performance of traditional object detection algorithms is limited, as they are incapable of extracting informative parts from low signal-to-noise ratio features. To address this problem, we propose Camouflaged Object Detection with Cascade and Feedback Fusion (CODCEF), a deep learning framework based on an RGB optical sensor that leverages a cascaded structure with Feedback Partial Decoders (FPD) instead of a traditional encoder–decoder structure. Through a selective fusion strategy and feedback loop, FPD reduces the loss of information and the interference of noises in the process of feature interweaving. Furthermore, we introduce Pixel Perception Fusion (PPF) loss, which aims to pay more attention to local pixels that might become the edges of an object. Experimental results on an edge device show that CODCEF achieved competitive results compared with 10 state-of-the-art methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.