Abstract
Micro/nano-electromechanical resonator-based logic elements have emerged recently as an attractive potential alternative to semiconductor electronics. The next step for this technology platform to make it into practical applications and to build complex computing operations beyond the fundamental logic gates is to develop cascadable logic units. Such units should produce outputs that can be used as inputs for the next logic units. Despite the recent developments in electromechanical computing, this requirement has remained elusive. Here, we demonstrate for the first time a conceptual framework for cascadable logic units. Cascadability is experimentally demonstrated through two case studies; one by cascading two OR logic gates. The other case is the universal NOR logic gate realized by cascading an OR and a NOT gate. The logic operations are performed by on-demand activation and deactivation of the second mode of vibration of a clamped-clamped microbeam resonator. We show that the demonstrated approach significantly lowers the complexity and number of microresonator-based logic functions compared to the CMOS-based counterparts, which improves energy efficiency. This can potentially lead toward the realization of a novel technology platform for an alternative computing paradigm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.