Abstract

The CRISPR/Cas9 system is a revolutionary gene editing technology that combines simplicity of use and efficiency of mutagenesis. As this technology progresses toward human therapies, valid concerns including off-target mutations and immunogenicity must be addressed. One approach to address these issues is to minimize the presence of the CRISPR/Cas9 components by maintaining a tighter temporal control of Cas9 endonuclease and reducing the time period of activity. This has been achieved to some degree by delivering the CRISPR/Cas9 system via pre-formed Cas9 + gRNA ribonucleoprotein (RNP) complexes. In this review, we first discuss the molecular modifications that can be made using CRISPR/Cas9 and provide an overview of current methods for delivering Cas9 RNP complexes both in vitro and in vivo. We conclude with examples of how Cas9 RNP delivery may be used to target neuroinflammatory processes, namely in regard to viral infections of the central nervous system and neurodegenerative diseases. We propose that Cas9 RNP delivery is a viable approach when considering the CRISPR/Cas9 system for both experimentation and the treatment of disease. Graphical Abstract.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call