Abstract
Spinocerebellar ataxia type 1 (SCA1) is an adult-onset neurodegenerative disease caused by an expansion of the CAG repeat region of the ATXN1 gene. Currently there are no disease modifying treatments; however, previous work has shown the potential of gene therapy, specifically RNAi, as a potential modality. Cas9 editing offers potential for these patients but has yet to be evaluated in SCA1 models. To test this, we first characterized the number of transgenes harbored in the common B05 mouse model of SCA1. Despite having 5 copies of the human mutant transgene, a 20% reduction of ATXN1 improved behavior deficits without increases in inflammatory markers. Importantly, the editing approach was confirmed in induced pluripotent stem cells (iPSC) neurons derived from patients with SCA1, promoting the translatability of the approach to patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.