Abstract

CRISPR-Cas systems endow the bacterial and archaeal species with adaptive immune mechanisms to fend off invading phages and foreign plasmids. The class 2 type VI CRISPR/Cas effector Cas13d has been harnessed to confer the protection against RNA viruses in diverse eukaryotic species. However a vast number of different viruses can potentially infect the same host plant resulting in mixed infection, thus necessitating the generation of crops with broad-spectrum resistance to multiple viruses. Here we report the repurposing of CRISPR/Cas13d coupled with an endogenous tRNA-processing system (polycistronic tRNA-gRNA, PTG) to target the multiple potato RNA viruses. Expression of Cas13d and four different gRNAs were observed in transgenic potato lines expressing the Cas13d/PTG construct. We show that the Cas13d/PTG transgenic plants exhibit resistance to either PVY, PVS, PVX or PLRV alone or two/three viruses simultaneously by reducing viral accumulation in plant cells. In sum, our findings provide an efficient strategy for engineering crops that can simultaneously resist infection by multiple RNA viruses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.