Abstract

Protozoa morphologically consistent with Caryospora sp. are one of the few pathogens associated with episodic mass mortality events involving free-ranging sea turtles. Parasitism of green turtles (Chelonia mydas) by these coccidia and associated mortality was first reported in maricultured turtles in the Caribbean during the 1970s. Years later, epizootics affecting wild green turtles in Australia occurred in 1991 and 2014. The first clinical cases of Caryospora-like infections reported elsewhere in free-ranging turtles were from the southeastern US in 2012. Following these initial individual cases in this region, we documented an epizootic and mass mortality of green turtles along the Atlantic coast of southern Florida from November 2014 through April 2015 and continued to detect additional, sporadic cases in the southeastern US in subsequent years. No cases of coccidial disease were recorded in the southeastern US prior to 2012 despite clinical evaluation and necropsy of stranded sea turtles in this region since the 1980s, suggesting that the frequency of clinical coccidiosis has increased here. Moreover, we also recorded the first stranding associated with infection by a Caryospora-like organism in Hawai'i in 2018. To further characterize the coccidia, we sequenced part of the 18S ribosomal and mitochondrial cytochrome oxidase I genes of coccidia collected from 62 green turtles found in the southeastern US and from one green turtle found in Hawai'i. We also sequenced the ribosomal internal transcribed spacer regions from selected cases and compared all results with those obtained from Caryospora-like coccidia collected from green turtles found in Australia. Eight distinct genotypes were represented in green turtles from the southeastern US. One genotype predominated and was identical to that of coccidia collected from the green turtle found in Hawai'i. We also found a coccidian genotype in green turtles from Florida and Australia with identical 18S and mitochondrial sequences, and only slight inter-regional differences in the internal transcribed spacer 2. We found no evidence of geographical structuring based on phylogenetic analysis. Low genetic variability among the coccidia found in green turtle populations with minimal natural connectivity suggests recent interoceanic dissemination of these parasites, which could pose a risk to sea turtle populations.

Highlights

  • The genus Caryospora are coccidian parasites in the order Eucoccidiorida, family Eimeriidae

  • Phylogenetic analyses show that Caryospora are paraphyletic, with C. bigemina, Caryospora-like coccidia from sea turtles, C. ernsti, and C. daceloe/C. neofalconis representing four distinct clades in the coccidian tree, with C. daceloe/C. neofalconis clustering in the family Sarcocystidae rather than Eimeriidae [3,4,5,6]

  • The use of European viper hosts suggests that C. bigemina may represent the correct cluster, until reference sequence is available for C. simplex, it is not possible to say which one of these clades is Caryospora

Read more

Summary

INTRODUCTION

The genus Caryospora are coccidian parasites in the order Eucoccidiorida, family Eimeriidae. As Chapman et al [4] note, the absence of genetic data from the original Caribbean C. cheloniae epizootic and the aforementioned taxonomic uncertainty around recognized Caryspora spp. present a formidable barrier to resolving taxonomy and to making a genus or species diagnosis In acknowledgment of their undefined taxonomic status, hereafter we refer to coccidia found in sea turtles morphologically resembling the original description of C. cheloniae as Caryosporalike organisms (CLOs). In 2018, we discovered a moribund juvenile green turtle in Hawai’i with severe enteritis associated with a CLO; the first case in this region This increase in diagnoses within US waters of the Northwest Atlantic and Central Pacific over the last decade suggested a recent change in parasitism or disease occurrence within these areas. We describe cases of CLO infection in green turtles, including the epizootic in southeastern Florida, and results of genetic characterization and phylogenetic analysis primarily based on the 18S ribosomal and mitochondrial cytochrome oxidase I (MT-coI) genes

MATERIALS AND METHODS
RESULTS
DISCUSSION
ETHICS STATEMENT
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.