Abstract

Mutations in amyloid precursor protein (APP) and presenilin1 result in overproduction and accumulation of β-amyloid (Aβ) peptide, which has been shown to play an important role in Alzheimer's disease (AD) pathogenesis. Carvedilol, a nonselective β-adrenergic receptor blocker used for treatment for heart failure and hypertension, has displayed its neuroprotective capacity due to its antioxidant property. In this study, we investigated whether Carvedilol has a neuronal protective effect against endogenous Aβ neurotoxicity in mouse Neuro2a (N2a) cells transfected with Swedish amyloid precursor protein (Swe-APP) mutant and Presenilin exon9 deletion mutant (N2a/Swe.D9). Elevated levels of reactive oxygen species (ROS), protein carbonyls, and 4-HNE were found in N2a/Swe.D9 cells, which were ameliorated by administration of Carvedilol in a dose-dependent manner. In addition, the levels of ATP and mitochondrial membrane potential were reduced in N2a/Swe.D9 cells, which were restored by treatment with Carvedilol. N2a/Swe.D9 cells displayed increased vulnerability to H2O2-induced cell death and apoptosis, which could be attenuated by Carvedilol. Mechanistically, we found that Carvedilol prevented apoptosis signals through reducing cytochrome C release and the level of cleaved caspase-3. Taken together, our findings suggest a possible use of Carvedilol in AD treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.