Abstract

ABSTRACT Objectives: We aimed to evaluate the effect of carvacrol (CRC), a phenolic monoterpene with high nutritional value on NLRP3 activation against chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain (NP) in rats and in lipopolysacharide (LPS) induced neuroinflammation in neuro2a (N2A) cells. Methods: NP was induced in male SD rats by performing CCI and CRC (30 and 60 mg/kg, p.o) was administered for 14 days. Behavioural and functional parameters were evaluated using standard procedures. Various molecular experimentations were conducted to evaluate the efficacy of CRC against CCI induced neuropathy and in LPS (1 μg/ml) primed and ATP (5 μM) treated N2A cells. Results: CCI resulted in marked development of hyperalgesia and allodynia. Further, CCI rats, LPS and ATP treated N2A cells showed enhanced expression of NLRP3, ASC, Caspase-1 and IL-1β. In addition, CCI rats exhibited diminished levels of Nrf-2 with an increase in Keap1 expression. Also, CCI animals manifested with compromised mitochondrial function along with decreased autophagy markers and enhanced p62 levels when compared to sham rats. However, CRC administration significantly ameliorated these changes suggesting NLRP3 inhibition by CRC may be attributed to activation of autophagy via Keap1/Nrf-2/p62 forward feedback loop and augmentation of mitochondrial quality control. Intriguingly, pretreatment of CRC (50 and 100 μM) to LPS and ATP treated N2A cells resulted in decreased colocalization of NLRP3 and ASC. Discussion: These findings revealed the neuroprotective potential of CRC against CCI induced NP and delineate the critical role of autophagy and mitochondrial quality control in NLRP3 regulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call