Abstract
ABSTRACTThe cartographic representation of geographic phenomena in the space–time cube comes with special challenges and opportunities when compared with two-dimensional maps. While the added dimension allows the display of attributes that vary with time, it is difficult to display rapidly varying temporal data given the limited display height. In this study, we adapt 2D cyclic point symbols to construct 3D surfaces designed along a helical path for the space–time cube. We demonstrate how these complex 3D helical surfaces can display detailed data, including data reported daily over 100 years and data reported in four-hour intervals over a year. To create the point symbols, each value is plotted along the curve of a helix, with each turn of the helix representing one year or week, respectively. The model is modified by varying the radii from the time axis to all points using the attribute value, in these cases maximum daily temperature and four-hourly ridership, and then creating a triangulated surface from the resulting points. Using techniques common to terrain representation, we apply hue and saturation to the surface based on attribute values, and lightness based on relief shading. Multiple surfaces can be displayed in a space–time cube with a consistent time interval facing the viewer, and the surfaces or viewer perspective can be rotated to display synchronized variations. We see this method as one example of how cartographic design can refine or enhance operations in the space–time cube.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.