Abstract

In the past two decades, there has been much interest in applying neural networks to financial time series forecasting. Yet, there has been relatively little attention paid to selecting the input features for training these networks. This paper presents a novel CARTMAP neural network based on Adaptive Resonance Theory that incorporates automatic, intuitive, transparent, and parsimonious feature selection with fast learning. On average, over three separate 4-year simulations spanning 2004–2009 of Dow Jones Industrial Average stocks, CARTMAP outperformed related and classical alternatives. The alternatives were an industry standard random walk, a regression model, a general purpose ARTMAP, and ARTMAP with stepwise feature selection. This paper also discusses why the novel feature selection scheme outperforms the alternatives and how it can represent a step toward more transparency in financial modeling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.