Abstract
The functional disability experienced in juvenile idiopathic arthritis (JIA) is primarily caused by joint effusion, synovial membrane hypertrophy, and periarticular soft tissue edema, leading to the degeneration of the osteocartilaginous structures because of the inflammatory process in the synovium. The ability to visualize the inflammatory changes and hence the ensuing osteocartilaginous degeneration is, therefore, of great importance in pediatric rheumatology. Ultrasonography (US) has been validated as a tool for measuring cartilage thickness in healthy children and, previously, we have found good agreement with the measures obtained by magnetic resonance imaging (MRI). Our aim is to validate and compare US with MRI measurements of distal femoral cartilage thickness in the knee joint at the medial condyle, lateral condyle, and intercondylar spots in children with JIA, and to locate the best spot for imaging comparisons. One knee from each of 23 children with oligoarticular JIA were investigated by both MRI and US. Outcome measures of imaging procedures were distal femoral cartilage thickness. We found a high level of agreement between MRI and US measurements of mean cartilage thickness, and Rho values between modalities were high (between 0.70 and 0.86, p < 0.05 for all). We found a thinner cartilage thickness at the medial condyle in comparison to the other investigated points. Evaluation of anatomical landmarks for optimal measurement of cartilage thickness was found to be the intercondylar spot, which was easier to locate in addition to a smaller variance around the mean for that anatomical measuring point. US measurements of distal femoral cartilage thickness are highly correlated to MRI measurements. The intercondylar notch of the distal femoral cartilage may be the best anatomical point for cartilage thickness measurements of the knee. US is a reliant and nonexpensive, non-invasive modality for visualization of childhood femoral cartilage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.