Abstract

To determine the effects of acute injury and tribosupplementation by hyaluronan (HA) on synovial fluid (SF) modulation of cartilage shear during tibio-femoral articulation. Human osteochondral blocks from the lateral femoral condyle (LFC) and tibial plateau (LTP) were apposed, compressed 13%, and subjected to sliding under video microscopy. Tests were conducted with equine SF from normal joints (NL-SF), SF from acutely injured joints (AI-SF), and AI-SF to which HA was added (AI-SF+HA). Local and overall shear strain (E(xz)) and the lateral displacement (Deltax) at which E(xz) reached 50% of peak values (Deltax(1/2)) were determined. During articulation, LFC and LTP cartilage E(xz) increased with Deltax and peaked when surfaces slid, with peak E(xz) being maintained during sliding. With AI-SF as lubricant, surface and overall Deltax(1/2) were approximately 40% and approximately 20% higher, respectively, than values with NL-SF and AI-SF+HA as lubricant. Also, peak E(xz) was markedly higher with AI-SF as lubricant than with NL-SF as lubricant, both near the surface (approximately 80%) and overall (50-200%). Following HA supplementation to AI-SF, E(xz) was reduced from values with AI-SF alone by 30-50% near the surface and 20-30% overall. Magnitudes of surface and overall E(xz) were markedly (approximately 50 to 80%) higher in LTP cartilage than LFC cartilage for all lubricants. Acute injury impairs SF function, elevating cartilage E(xz) markedly during tibio-femoral articulation; such elevated E(xz) may contribute to post-injury associated cartilage degeneration. Since HA partially restores the function of AI-SF, as indicated by E(xz), tribosupplements may be beneficial in modulating normal cartilage homeostasis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.