Abstract

Cartilage and tendon extracellular matrices are composed of collagens, proteoglycans, and a number of noncollagenous proteins. Cartilage oligomeric matrix protein (COMP) is a prominent such protein, structurally related to the thrombospondins. We found that native COMP binds to collagen I/II and procollagen I/II and that the interaction is dependent on the divalent cations Zn2+ or Ni2+, whereas Ca2+, Mg2+, and Mn2+ did not promote binding. Using a solid phase assay, Scatchard analysis identified one class of binding site with a dissociation constant (Kd) close to 1.5 nM in the presence of Zn2+. The results were confirmed by studies using surface plasmon resonance. Furthermore, metal chelate chromatography demonstrated that COMP bound Zn2+ and Ni2+. Electron microscopy showed that the interaction occurred at four defined sites on the 300-nm collagen and procollagen molecules. Two were located close to each end, and two at 126 and 206 nm, respectively, from the C-terminal. COMP interacted via its C-terminal globular domain and significantly only in the presence of Zn2+.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.