Abstract
Macrophages play a crucial role in the progression of osteoarthritis (OA). Their phenotype may range from pro-inflammatory to anti-inflammatory. The aim of this study was to evaluate the direct effects of macrophage subtypes on cartilage by culturing macrophage conditioned medium (MCM) on human articular cartilage. Human OA cartilage explants were cultured with MCM of pro-inflammatory M(IFNγ+TNFα), or anti-inflammatory M(IL-4) or M(IL-10) human monocyte-derived macrophages. To assess effects of anti-inflammatory macrophages, the cartilage was cultured with a combination of MCM phenotypes as well as pre-stimulated with IFNγ+TNFα cartilage before culture with MCM. The reactions of the explants were assessed by gene expression, nitric oxide (NO) production and release of glycosaminoglycans (GAGs). M(IFNγ+TNFα) MCM affected OA cartilage by upregulation of IL1B (Interleukin 1β), IL6, MMP13 (Matrix Metalloproteinase-13) and ADAMTS5 (A Disintegrin And Metalloproteinase with Thrombospondin Motifs-5), while inhibiting ACAN (aggrecan) and COL2A1 (collagen type II). M(IL-10) upregulated IL1B and Suppressor of cytokine signaling 1 (SOCS1). NO production and GAG release by the cartilage was increased when cultured with M(IFNγ+TNFα) MCM. M(IL-4) and M(IL-10) did not inhibit the effects of M(IFNγ+TNFα) MCM of neither phenotype affected IFNγ+TNFα pre-stimulated cartilage, in which an inflammatory gene response was deliberately induced. M(IFNγ+TNFα) macrophages have a prominent direct effect on OA cartilage, while M(IL-4) and M(IL-10) do not inhibit the effects of M(IFNγ+TNFα), or IFNγ+TNFα induced inflammation of the cartilage. Therapies aiming at inhibiting cartilage degeneration may take this into account by directing suppression of pro-inflammatory macrophages or stimulation of anti-inflammatory macrophages.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.