Abstract

Articular cartilage (AC) is the thin tissue that covers the long bone ends in the joints and that ensures the transmission of forces between adjacent bones while allowing nearly frictionless movements between them. AC repair is a technologic and scientific challenge that has been addressed with numerous approaches. A major deadlock is the capacity to take in account its complex mechanical properties in repair strategies. In this review, we first describe the major mechanical behaviors of AC for the non-specialists. Then, we show how researchers have progressively identified specific mechanical parameters using mathematical models. There are still gaps in our understanding of some of the observations concerning AC biomechanical properties, particularly the differences in extracellular matrix stiffness measured at the microscale and at the millimetric scale. Nevertheless, for bioengineering applications, AC repair strategies must take into account what are commonly considered the main mechanical features of cartilage: its ability to withstand high stresses through three main behaviors (elasticity, poroelasticity and swelling). Finally, we emphasize that future studies need to investigate AC mechanical properties at different scales, particularly the gradient of mechanical properties around cells and across the cartilage depth, and the differences in mechanical properties at different scales. This multi-scale approach could greatly enhance the success of AC restorative approaches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call