Abstract

Emerging robotic systems with compliant characteristics, incorporating nonrigid links and/or elastic actuators, are opening new applications with advanced safety features, as well as improved performance and energy efficiency in contact tasks. However, the complexity of such systems poses challenges in modeling and control due to their nonlinear nature and model variations over time. To address these challenges, the paper introduces Locally Weighted Projection Regression (LWPR) and its online learning capabilities to keep the model of compliant actuators accurate and enable the model-based controls to be more robust. The approach is experimentally validated in Cartesian position and stiffness control for a 4 DoF planar robot driven by Variable Stiffness Actuators (VSA), whose real-time implementation is supported by the Sequential Least Squares Programming (SLSQP) optimization approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.