Abstract

A method of fast nuclear magnetic resonance (NMR) imaging which uses only square wave gradient shapes and also collects data on Cartesian coordinates in a way similar to the blipped echo planar imaging method (BEPI) is described. The method is a heuristic attempt at finding an optimal data collection strategy for NMR imaging. Its advantages and disadvantages compared to other methods are carefully analyzed. Clinical size anatomical (head and body) images are shown. It is found that the interecho phase-angle discrepancies that are caused bv the B(0) inhomogeneity and by the gradient wave form distortion can largely be eliminated by using the half Fourier method with full Fourier phase map correction, but one phase map is required for each echo. GRASS/FLASH spoiling techniques are incorporated into the method in order to allow multiecho speed increases for scans which would run under 10 s using a single-echo method. The technique can be applied directly to GRASS/FLASH itself, as is demonstrated by a two-echo GRASS scan. The fastest image was 1.9 s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.