Abstract

We revisit the definition of Cartesian differential categories, showing that a slightly more general version is useful for a number of reasons. As one application, we show that these general differential categories are comonadic over categories with finite products, so that every category with finite products has an associated cofree differential category. We also work out the corresponding results when the categories involved have restriction structure, and show that these categories are closed under splitting restriction idempotents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.