Abstract

We develop the concept of Cartan ribbons together with a rolling-based method to ribbonize and approximate any given surface in space by intrinsically flat ribbons. The rolling requires that the geodesic curvature along the contact curve on the surface agrees with the geodesic curvature of the corresponding Cartan development curve. Essentially, this follows from the orientational alignment of the two co-moving Darboux frames during rolling. Using closed contact centre curves, we obtain closed approximating Cartan ribbons that contribute zero to the total curvature integral of the ribbonization. This paves the way for a particularly simple topological inspection-it is reduced to the question of how the ribbons organize their edges relative to each other. The Gauss-Bonnet theorem leads to this topological inspection of the vertices. Finally, we display two examples of ribbonizations of surfaces, namely of a torus using two ribbons and of an ellipsoid using closed curvature lines as centre curves for the ribbons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call